Towards a framework for developing semantic relatedness reference standards

نویسندگان

  • Serguei V. S. Pakhomov
  • Ted Pedersen
  • Bridget T. McInnes
  • Genevieve B. Melton
  • Alexander Ruggieri
  • Christopher G. Chute
چکیده

Our objective is to develop a framework for creating reference standards for functional testing of computerized measures of semantic relatedness. Currently, research on computerized approaches to semantic relatedness between biomedical concepts relies on reference standards created for specific purposes using a variety of methods for their analysis. In most cases, these reference standards are not publicly available and the published information provided in manuscripts that evaluate computerized semantic relatedness measurement approaches is not sufficient to reproduce the results. Our proposed framework is based on the experiences of medical informatics and computational linguistics communities and addresses practical and theoretical issues with creating reference standards for semantic relatedness. We demonstrate the use of the framework on a pilot set of 101 medical term pairs rated for semantic relatedness by 13 medical coding experts. While the reliability of this particular reference standard is in the "moderate" range; we show that using clustering and factor analyses offers a data-driven approach to finding systematic differences among raters and identifying groups of potential outliers. We test two ontology-based measures of relatedness and provide both the reference standard containing individual ratings and the R program used to analyze the ratings as open-source. Currently, these resources are intended to be used to reproduce and compare results of studies involving computerized measures of semantic relatedness. Our framework may be extended to the development of reference standards in other research areas in medical informatics including automatic classification, information retrieval from medical records and vocabulary/ontology development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semantic Similarity and Relatedness between Clinical Terms: An Experimental Study.

Automated approaches to measuring semantic similarity and relatedness can provide necessary semantic context information for information retrieval applications and a number of fundamental natural language processing tasks including word sense disambiguation. Challenges for the development of these approaches include the limited availability of validated reference standards and the need for bett...

متن کامل

Evaluating semantic similarity and relatedness over the semantic grouping of clinical term pairs

INTRODUCTION This article explores how measures of semantic similarity and relatedness are impacted by the semantic groups to which the concepts they are measuring belong. Our goal is to determine if there are distinctions between homogeneous comparisons (where both concepts belong to the same group) and heterogeneous ones (where the concepts are in different groups). Our hypothesis is that the...

متن کامل

TEXTUAL AND INTER-TEXTUAL ANALYSES OF IRANIAN EFL UNDERGRADUATES’ TYPES OF ENGLISH READING TOWARDS DEVELOPING A CAREFUL READING FRAMEWORK

This study investigated textual and inter-textual reading of a group of Iranian EFL undergraduates’ careful English reading types. In this research, Khalifa and Weir’s (2009) reading framework was used to propose a more inclusive aspect of a careful reading framework and the reading construct for instructional and assessment goals. The participants of this study were B.A. students of English Tr...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical informatics

دوره 44 2  شماره 

صفحات  -

تاریخ انتشار 2011